\(\int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^3} \, dx\) [126]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 121 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^3} \, dx=\frac {4 (A+9 B) \sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{15 a^3 f}-\frac {(A+9 B) \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{5 a^3 c f}-\frac {(A-B) \sec ^5(e+f x) (c-c \sin (e+f x))^{9/2}}{5 a^3 c^3 f} \]

[Out]

4/15*(A+9*B)*sec(f*x+e)^3*(c-c*sin(f*x+e))^(3/2)/a^3/f-1/5*(A+9*B)*sec(f*x+e)^3*(c-c*sin(f*x+e))^(5/2)/a^3/c/f
-1/5*(A-B)*sec(f*x+e)^5*(c-c*sin(f*x+e))^(9/2)/a^3/c^3/f

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {3046, 2934, 2753, 2752} \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^3} \, dx=-\frac {(A-B) \sec ^5(e+f x) (c-c \sin (e+f x))^{9/2}}{5 a^3 c^3 f}-\frac {(A+9 B) \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{5 a^3 c f}+\frac {4 (A+9 B) \sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{15 a^3 f} \]

[In]

Int[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(3/2))/(a + a*Sin[e + f*x])^3,x]

[Out]

(4*(A + 9*B)*Sec[e + f*x]^3*(c - c*Sin[e + f*x])^(3/2))/(15*a^3*f) - ((A + 9*B)*Sec[e + f*x]^3*(c - c*Sin[e +
f*x])^(5/2))/(5*a^3*c*f) - ((A - B)*Sec[e + f*x]^5*(c - c*Sin[e + f*x])^(9/2))/(5*a^3*c^3*f)

Rule 2752

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m - 1))), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rule 2753

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m + p))), x] + Dist[a*((2*m + p - 1)/(m + p)), Int
[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2,
0] && IGtQ[Simplify[(2*m + p - 1)/2], 0] && NeQ[m + p, 0]

Rule 2934

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c + a*d))*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p +
 1))), x] + Dist[b*((a*d*m + b*c*(m + p + 1))/(a*g^2*(p + 1))), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*
x])^(m - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1]

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sec ^6(e+f x) (A+B \sin (e+f x)) (c-c \sin (e+f x))^{9/2} \, dx}{a^3 c^3} \\ & = -\frac {(A-B) \sec ^5(e+f x) (c-c \sin (e+f x))^{9/2}}{5 a^3 c^3 f}+\frac {(A+9 B) \int \sec ^4(e+f x) (c-c \sin (e+f x))^{7/2} \, dx}{10 a^3 c^2} \\ & = -\frac {(A+9 B) \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{5 a^3 c f}-\frac {(A-B) \sec ^5(e+f x) (c-c \sin (e+f x))^{9/2}}{5 a^3 c^3 f}-\frac {(2 (A+9 B)) \int \sec ^4(e+f x) (c-c \sin (e+f x))^{5/2} \, dx}{5 a^3 c} \\ & = \frac {4 (A+9 B) \sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{15 a^3 f}-\frac {(A+9 B) \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{5 a^3 c f}-\frac {(A-B) \sec ^5(e+f x) (c-c \sin (e+f x))^{9/2}}{5 a^3 c^3 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 6.83 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.93 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^3} \, dx=\frac {c \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-2 A+27 B-15 B \cos (2 (e+f x))+10 (A+3 B) \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{15 a^3 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (1+\sin (e+f x))^3} \]

[In]

Integrate[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(3/2))/(a + a*Sin[e + f*x])^3,x]

[Out]

(c*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-2*A + 27*B - 15*B*Cos[2*(e + f*x)] + 10*(A + 3*B)*Sin[e + f*x])*Sqr
t[c - c*Sin[e + f*x]])/(15*a^3*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(1 + Sin[e + f*x])^3)

Maple [A] (verified)

Time = 0.69 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.69

method result size
default \(-\frac {2 c^{2} \left (\sin \left (f x +e \right )-1\right ) \left (-15 B \left (\cos ^{2}\left (f x +e \right )\right )+\sin \left (f x +e \right ) \left (5 A +15 B \right )-A +21 B \right )}{15 a^{3} \left (1+\sin \left (f x +e \right )\right )^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(83\)

[In]

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

-2/15*c^2/a^3*(sin(f*x+e)-1)/(1+sin(f*x+e))^2*(-15*B*cos(f*x+e)^2+sin(f*x+e)*(5*A+15*B)-A+21*B)/cos(f*x+e)/(c-
c*sin(f*x+e))^(1/2)/f

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.79 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^3} \, dx=\frac {2 \, {\left (15 \, B c \cos \left (f x + e\right )^{2} - 5 \, {\left (A + 3 \, B\right )} c \sin \left (f x + e\right ) + {\left (A - 21 \, B\right )} c\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{15 \, {\left (a^{3} f \cos \left (f x + e\right )^{3} - 2 \, a^{3} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, a^{3} f \cos \left (f x + e\right )\right )}} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

2/15*(15*B*c*cos(f*x + e)^2 - 5*(A + 3*B)*c*sin(f*x + e) + (A - 21*B)*c)*sqrt(-c*sin(f*x + e) + c)/(a^3*f*cos(
f*x + e)^3 - 2*a^3*f*cos(f*x + e)*sin(f*x + e) - 2*a^3*f*cos(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^3} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**3,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 663 vs. \(2 (109) = 218\).

Time = 0.31 (sec) , antiderivative size = 663, normalized size of antiderivative = 5.48 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^3} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

2/15*((c^(3/2) - 10*c^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 4*c^(3/2)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 -
30*c^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 6*c^(3/2)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 - 30*c^(3/2)*si
n(f*x + e)^5/(cos(f*x + e) + 1)^5 + 4*c^(3/2)*sin(f*x + e)^6/(cos(f*x + e) + 1)^6 - 10*c^(3/2)*sin(f*x + e)^7/
(cos(f*x + e) + 1)^7 + c^(3/2)*sin(f*x + e)^8/(cos(f*x + e) + 1)^8)*A/((a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e)
 + 1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f*
x + e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)*(sin(f*x + e)^2/(cos(f*x + e) + 1)^2
+ 1)^(3/2)) - 6*(c^(3/2) + 5*c^(3/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 14*c^(3/2)*sin(f*x + e)^2/(cos(f*x + e)
 + 1)^2 + 15*c^(3/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 26*c^(3/2)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 15
*c^(3/2)*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + 14*c^(3/2)*sin(f*x + e)^6/(cos(f*x + e) + 1)^6 + 5*c^(3/2)*sin(
f*x + e)^7/(cos(f*x + e) + 1)^7 + c^(3/2)*sin(f*x + e)^8/(cos(f*x + e) + 1)^8)*B/((a^3 + 5*a^3*sin(f*x + e)/(c
os(f*x + e) + 1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5
*a^3*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)*(sin(f*x + e)^2/(cos(f*x +
 e) + 1)^2 + 1)^(3/2)))/f

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 373 vs. \(2 (109) = 218\).

Time = 0.45 (sec) , antiderivative size = 373, normalized size of antiderivative = 3.08 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^3} \, dx=-\frac {2 \, \sqrt {2} {\left (A c \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 9 \, B c \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + \frac {5 \, A c {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + \frac {45 \, B c {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} - \frac {5 \, A c {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} + \frac {75 \, B c {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} + \frac {15 \, A c {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}} + \frac {15 \, B c {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}\right )} \sqrt {c}}{15 \, a^{3} f {\left (\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + 1\right )}^{5}} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^3,x, algorithm="giac")

[Out]

-2/15*sqrt(2)*(A*c*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + 9*B*c*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + 5*A*c*(co
s(-1/4*pi + 1/2*f*x + 1/2*e) - 1)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 4
5*B*c*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e)
 + 1) - 5*A*c*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*
x + 1/2*e) + 1)^2 + 75*B*c*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/
4*pi + 1/2*f*x + 1/2*e) + 1)^2 + 15*A*c*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3*sgn(sin(-1/4*pi + 1/2*f*x + 1/2
*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3 + 15*B*c*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3*sgn(sin(-1/4*pi +
1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3)*sqrt(c)/(a^3*f*((cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)
/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 1)^5)

Mupad [B] (verification not implemented)

Time = 19.60 (sec) , antiderivative size = 683, normalized size of antiderivative = 5.64 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^3} \, dx=\text {Too large to display} \]

[In]

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(3/2))/(a + a*sin(e + f*x))^3,x)

[Out]

(exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2)*((4*B*c)/(5*a^3*f)
 - (2*c*(2*A - 3*B))/(5*a^3*f) - (4*c*(3*A - 2*B))/(5*a^3*f) + (c*(A*2i - B*3i)*2i)/(5*a^3*f) + (c*(A*3i - B*2
i)*4i)/(5*a^3*f)))/((exp(e*1i + f*x*1i) - 1i)*(exp(e*1i + f*x*1i) + 1i)^5) - (exp(e*1i + f*x*1i)*(c - c*((exp(
- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2)*((2*B*c)/(3*a^3*f) + (c*(A*2i - B*5i)*2i)/(3*a^3*f)
 - (2*c*(10*A - 13*B))/(3*a^3*f) + (c*(A*8i - B*13i)*2i)/(15*a^3*f)))/((exp(e*1i + f*x*1i) - 1i)*(exp(e*1i + f
*x*1i) + 1i)^3) + (exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2)*
((c*(2*A - 3*B)*1i)/(3*a^3*f) - (B*c*1i)/(a^3*f) + (2*c*(A*1i - B*3i))/(a^3*f)))/((exp(e*1i + f*x*1i) - 1i)*(e
xp(e*1i + f*x*1i) + 1i)^2) - (exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)
/2))^(1/2)*((c*(A - B)*4i)/(a^3*f) - (B*c*1i)/(2*a^3*f) + (c*(8*A - 3*B)*1i)/(10*a^3*f) + (c*(A*1i - B*2i))/(a
^3*f) + (c*(A*7i - B*6i))/(a^3*f)))/((exp(e*1i + f*x*1i) - 1i)*(exp(e*1i + f*x*1i) + 1i)^4) + (4*B*c*exp(e*1i
+ f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2))/(a^3*f*(exp(e*1i + f*x*1i)
- 1i)*(exp(e*1i + f*x*1i) + 1i))